dtorch.functionnal
Description
This module contain all the methods that can be used on jtensors. All of them support the autograd and are often used in ML.
Functions
- transpose(tensor: dtorch.jtensors.JTensors, axis: Tuple[int, int] | None = (1, 0)) dtorch.jtensors.JTensors
- Parameters:
tensor – the tensor to transpose
axis – the axis to transpose
- Returns:
the transposed tensor
This function transpose the tensor along the given axes.
- split(tensor: dtorch.jtensors.JTensors, value: int | list[int]) dtorch.jtensors.JTensors
- Parameters:
tensor – the tensor to split
value – the value to split the tensor
- Returns:
the splitted tensor
This function split the tensor along the given axis.
- norm(tensor) dtorch.jtensors.JTensors
- Parameters:
tensor – the tensor to normalize
- Returns:
the normalized tensor
This function return a 1 element tensor containing the norm of the tensor.
- sqrt(tensor: dtorch.jtensors.JTensors) dtorch.jtensors.JTensors
- Parameters:
tensor – the tensor to sqrt
- Returns:
the sqrted tensor
This function return a tensor containing the square root of the tensor.
- logsumexp(tensor: dtorch.jtensors.JTensors) dtorch.jtensors.JTensors
- Parameters:
tensor – the tensor to logsumexp
- Returns:
the logsumexped tensor
This function return a tensor containing the logsumexp of the tensor. Mathematically, it is defined as \(log(sum(exp(tensor)))\).
- sigmoid(tensor: dtorch.jtensors.JTensors) dtorch.jtensors.JTensors
- Parameters:
tensor – the tensor to sigmoid
- Returns:
the sigmoided tensor
This function return a tensor containing the sigmoid of the tensor. Mathematically, it is defined as \(1 / (1 + exp(-tensor))\).
- from_list(data: list[dtorch.jtensors.JTensors]) dtorch.jtensors.JTensors
- Parameters:
data – the list of tensors to concatenate
- Returns:
the concatenated tensor
This function return a tensor containing the concatenation of the given tensors.
- to_list(tensor: dtorch.jtensors.JTensors) list[dtorch.jtensors.JTensors]
- Parameters:
tensor – the tensor to split
- Returns:
the splitted tensor
This function return a list of tensors containing the split of the given tensor.
- as_strided(tensor: dtorch.jtensors.JTensors, shape: Tuple[int, int], strides: Tuple[int, int]) dtorch.jtensors.JTensors
- Parameters:
tensor – the tensor to transform
shape – the shape of the new tensor
strides – the strides of the new tensor
- Returns:
the strided tensor
This function return a tensor with the new stride and shape. To know more about strides, see this.
- conv1d(input: dtorch.jtensors.JTensors, weight: dtorch.jtensors.JTensors, bias: dtorch.jtensors.JTensors | None = None, stride: int | None = 1) dtorch.jtensors.JTensors
- Parameters:
input – 1d tensor (batch_size, in_channel, width) or (in_channel, width)
weight – (out_channel, in_channel, kernel_width) or (in_channel, kernel_width)
bias – (out_channel). Defaults to None.
stride – movement speed of the kernel. Defaults to 1.
- Returns:
the convoluted tensor
This function return a tensor containing the convolution of the input tensor with the weight tensor. If the bias is not None, it will be added to the result.
- conv2d(input: dtorch.jtensors.JTensors, weight: dtorch.jtensors.JTensors, bias: dtorch.jtensors.JTensors | None = None, stride: int = 1) dtorch.jtensors.JTensors
- Parameters:
input – 2d tensor (batch_size, in_channel, height, width) or (in_channel, height, width)
weight – (out_channel, in_channel, kernel_height, kernel_width) or (in_channel, kernel_height, kernel_width)
bias – (out_channel). Defaults to None.
stride – movement speed of the kernel. Defaults to 1.
- Returns:
the convoluted tensor
This function return a tensor containing the convolution of the input tensor with the weight tensor. If the bias is not None, it will be added to the result.
- dropout(tensor: dtorch.jtensors.JTensors, p: float = 0.5)
- Parameters:
tensor – the tensor to dropout
p – the probability of dropout. Defaults to 0.5.
- Returns:
the dropouted tensor
This function return a tensor containing the dropouted tensor. The dropout is a technique used to prevent overfitting. It randomly set some values to 0.
- softmax(tensor: dtorch.jtensors.JTensors) dtorch.jtensors.JTensors
- Parameters:
tensor – the tensor to softmax
- Returns:
the softmaxed tensor
This function return a tensor containing the softmax of the tensor. Mathematically, it is defined as \(exp(tensor) / sum(exp(tensor))\).
- max(tensor: dtorch.jtensors.JTensors, value: int | float) dtorch.jtensors.JTensors
- Parameters:
tensor – the tensor to max
value – the value to max the tensor
- Returns:
the maxed tensor
This function return a tensor containing the max between the tensor and each value.
- exp(tensor: dtorch.jtensors.JTensors) dtorch.jtensors.JTensors
- Parameters:
tensor – the tensor to exp
- Returns:
the exped tensor
This function return a tensor containing the exp of the tensor.
- log(tensor: dtorch.jtensors.JTensors) dtorch.jtensors.JTensors
- Parameters:
tensor – the tensor to log
- Returns:
the loged tensor
This function return a tensor containing the log of the tensor.
- matmul(left: dtorch.jtensors.JTensors, right: dtorch.jtensors.JTensors) dtorch.jtensors.JTensors
- Parameters:
left – the left tensor
right – the right tensor
- Returns:
the multiplied tensor
This function return a tensor containing the multiplication of the left tensor with the right tensor.
- sum(tensor: dtorch.jtensors.JTensors, axis: Tuple[int] | None = None, keepdims: bool = False) dtorch.jtensors.JTensors
- Parameters:
tensor – the tensor to sum
axis – the axis to sum. Defaults to None.
keepdims – whether to keep the dimensions. Defaults to False.
- Returns:
the summed tensor
This function return a tensor containing the sum of the tensor. If the axis is not None, it will sum the tensor along the given axis. If the keepdims is True, it will keep the dimensions of the tensor.
- squeeze(tensor: dtorch.jtensors.JTensors, axis: int) dtorch.jtensors.JTensors
- Parameters:
tensor – the tensor to squeeze
axis – the axis to squeeze
- Returns:
the squeezed tensor
This function return a tensor containing the squeezed tensor. It will remove the dimension of the tensor along the given axis.
- unsqueeze(tensor: dtorch.jtensors.JTensors, axis: int) dtorch.jtensors.JTensors
- Parameters:
tensor – the tensor to unsqueeze
axis – the axis to unsqueeze
- Returns:
the unsqueezed tensor
This function return a tensor containing the unsqueezed tensor. It will add a dimension of the tensor along the given axis.
- reshape(tensor: dtorch.jtensors.JTensors, shape: Tuple[int]) dtorch.jtensors.JTensors
- Parameters:
tensor – the tensor to reshape
shape – the new shape of the tensor
- Returns:
the reshaped tensor
This function return a tensor containing the reshaped tensor. It will reshape the tensor to the given shape.
- arange(start: int, end: int, step: int = 1) dtorch.jtensors.JTensors
- Parameters:
start – the start of the range
end – the end of the range
step – the step of the range. Defaults to 1.
- Returns:
the ranged tensor
This function return a tensor containing the ranged tensor. It will create a tensor containing the values from start to end with the given step.
- tensor(list: list | np.ndarray, require_grads: bool = False, dtype: type | np.dtype = np.float64) dtorch.jtensors.JTensors
- Parameters:
list – the list to convert to tensor
require_grads – whether the tensor require gradients. Defaults to False.
dtype – the type of the tensor. Defaults to np.float64.
- Returns:
the converted tensor
This function return a tensor containing the converted tensor. It will convert the list to a tensor.
- random(*shape: int) dtorch.jtensors.JTensors
- Parameters:
shape – the shape of the random tensor
- Returns:
the random tensor
This function return a tensor containing the random tensor. It will create a tensor containing random values.
- ones(*shape: int, requires_grad: bool = False) dtorch.jtensors.JTensors
- Parameters:
shape – the shape of the ones tensor
requires_grad – whether the tensor require gradients. Defaults to False.
- Returns:
the ones tensor
This function return a tensor containing ones of the given shape.
- zeros(*shape: int, requires_grad: bool = False) dtorch.jtensors.JTensors
- Parameters:
shape – the shape of the zeros tensor
requires_grad – whether the tensor require gradients. Defaults to False.
- Returns:
the zeros tensor
This function return a tensor containing zeros of the given shape.
- xavier(nb_feat: int, size: int, require_grads: bool | None = False) dtorch.jtensors.JTensors
- Parameters:
nb_feat – the number of features
size – the size of the tensor
require_grads – whether the tensor require gradients. Defaults to False.
- Returns:
the xavier tensor
It will create a tensor containing random values following the xavier initialization.
- zeros_like(tensor: dtorch.jtensors.JTensors) dtorch.jtensors.JTensors
- Parameters:
tensor – the tensor to zeros like
- Returns:
the zeros like tensor
This function return a tensor containing zeros like the given tensor.
- uniform_(_from: float | int, _to: float | int, size: int, require_grads: bool = False)
- Parameters:
_from – the start of the range
_to – the end of the range
size – the size of the tensor
require_grads – whether the tensor require gradients. Defaults to False.
- Returns:
the uniform tensor
It will create a tensor containing random values following the uniform initialization.